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Summary A major glacial trough ("Belgica Trough") on the continental shelf in the southern Bellingshausen Sea acted 
as an important outlet for ice draining the West Antarctic Ice Sheet during the Last Glacial Maximum (LGM). Mega-
scale glacial lineations, drumlins and grounding-zone wedges indicate that Belgica Trough represents the former 
pathway of a grounded ice stream, which advanced to the shelf break during the LGM and was fed by ice draining 
through Eltanin Bay and Ronne Entrance. Here we present the preliminary results of sedimentological investigations 
carried out on 26 sediment cores recovered from the shelf and slope. This unique dataset allows the identification of 
various facies types that reflect the different phases of grounded ice advance, retreat, and post-glacial onset of seasonal 
open-water conditions. We will reconstruct the complex processes of erosion, transport and (re-)deposition controlling 
sedimentation on the margin and the timing of ice-sheet retreat from the shelf. 
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Introduction 
The West Antarctic Ice Sheet (WAIS; Fig. 1) is considered as the most vulnerable part of the Antarctic ice sheet, 

because it is largely grounded below sea level (e.g. Oppenheimer, 1998). Its complete disintegration would raise global 
sea level by ~5 m. Therefore, the knowledge of the past and current mass balance of the WAIS is crucial for an accurate 
estimation of future sea-level rise (Vaughan & Arthern, 2007). Recently, some parts of the WAIS have shown dramatic 
signs for a negative mass balance, including thinning, flow acceleration and grounding-line retreat of glaciers (e.g. 
Vaughan & Arthern, 2007). It is unclear, however, if the WAIS is still responding to climatic changes following the 
LGM (Larter et al., 2007). Marine sediments recovered from the Ross Sea embayment suggest that ice retreat there has 
progressed since about 20 ka and may eventually result in a complete collapse of the WAIS within the next 4,000-7,000 
years (Bindschadler, 1998). In response to the present global warming the WAIS could even disintegrate during the next 
500-700 years (Oppenheimer, 1998). Most predictions about the future behavior of the WAIS are based on the 
chronology of the ice-front and grounding-line retreat and ice-sheet thinning during recent times. The deglaciation 
history of the WAIS since the LGM is mainly reconstructed from studying and dating subglacial and glaciomarine 
sediments from the embayments in the Ross, Amundsen, and Weddell seas, which form the main exit gates for ice 
draining the WAIS today (e.g. Bindschadler, 1998; Lowe & Anderson, 2002). 

The southern Bellingshausen Sea is a poorly studied area of the West Antarctic continental margin, but was 
investigated during cruise JR104 on RRS James Clark Ross in 2004 (Fig. 1). Multibeam swath bathymetric data and 
sub-bottom acoustic profiles revealed the existence of a major glacial trough ("Belgica Trough") and of an associated 
trough mouth fan ("Belgica TMF") on the adjacent slope. Distinct seabed morphological features on the shelf, such as 
mega-scale glacial lineations, drumlins and grounding-zone wedges, indicate that Belgica Trough represents the former 
pathway of a grounded ice stream, which had advanced to the shelf break during the LGM (Ó Cofaigh et al., 2005). 
Moreover, the orientation of the subglacial bedforms suggested that the ice stream was fed by grounded ice draining 
through Eltanin Bay and Ronne Entrance. These results revealed that, in contrast to the present drainage pattern of the 
WAIS, ice flow into the southern Bellingshausen Sea played a significant role in the past. First results of studies on 
three sediment cores recovered from the continental margin in the southern Bellingshausen Sea during a previous cruise 
on RV Polarstern confirmed grounded ice advance to the shelf break and deposition of glaciogenic debris flows (GDFs) 
on the western part of the Belgica TMF (Hillenbrand et al., 2005). While the mineralogical composition of a 
deformation till recovered from the shelf corroborated supply of glaciogenic detritus from Eltanin Bay, the 
mineralogical composition of the GDFs on the continental slope pointed to major supply of subglacial debris via Ronne 
Entrance (Hillenbrand et al., 2005). The latter finding is in conflict with the orientation of subglacial bedforms on the 
shelf indicating that ice flowing into Belgica Trough was mainly fed by ice draining through Eltanin Bay with a smaller 
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contribution from ice draining through Ronne Entrance (Ó Cofaigh et al., 2005). Until now, no reliable age models for 
the cores collected from the southern Bellingshausen Sea were available (Hillenbrand et al., 2005). 

 

Figure 1. Map of the southern Bellingshausen Sea with ship track of cruise JR104 on RRS James Clark Ross and core 
locations of cruises JR104 and ANT-XI/3 with RV Polarstern (modified from Ó Cofaigh et al., 2005). 

Preliminary results and discussion 
New sedimentological data 
Over the past couple of years numerous sedimentological analyses have been carried out on additional surface 

sediment samples and marine sediment cores recovered during JR104 (Fig. 1) sheding new light on the depositional 
processes, the patterns of grounded ice flow and the history of ice retreat from the shelf in the southern Bellingshausen 
Sea. These studies included core logging (by visual description and x-raying), measurement of physical properties 
(magnetic susceptibility, sediment density, water content, shear strength), grain-size analysis, determination of organic 
and inorganic carbon content, analysis of clay mineral assemblages, and AMS 14C dating of calcareous (micro-)fossils 
and the acid-insoluble fraction of the bulk organic matter (AIO). 

Shelf and slope sediments as indicators for (paleo-)environmental conditions 
Sedimentary sequences recovered in the southern Bellingshausen Sea document a whole suite of (sub-)glacial and 

glaciomarine environmental settings. The basal units in the gravity cores from the outer and middle shelf, from Ronne 
Entrance, from the western Belgica TMF, and from the continental slope east of Belgica TMF (core GC381) consist of 
thick, grey, massive, lithogenic diamictons (e.g core GC374, Fig. 2). The diamictons on the slope represent GDFs 
consisting of the detritus initially delivered by the grounded ice stream to the shelf edge during the LGM. In contrast, 
the lithologically similar diamictons in Belgica Trough and Ronne Entrance are interpreted as deformation tills, which 
were deposited directly at the base of the grounded ice stream, and as sub-ice shelf diamictons, which were deposited 
subsequently to the retreat of the grounding line. Core GC371 from the iceberg-soured outer Belgica Trough recovered 
a soft diamicton that is interpreted as an iceberg turbate. The basal sediments in cores from Eltanin Bay consist of grey-
olive, lithogenic, massive to stratified gravelly muddy sands deposited as GDFs or iceberg-rafted sediments. Core 
GC380 was collected from an area of the eastern Belgica TMF, where gullies and channels are incised into the upper 
slope, and recovered a thick sequence of lithogenic sandy silt and clay laminae, which were probably deposited by 
turbidity currents. Sedimentation of the sandy-silt/clay couplets by meltwater plumes seems to be less likely. 

The GDFs on the western Belgica TMF are capped by lithogenic muds with silty to sandy layers interpreted as distal 
turbidites. In core GC381 the basal GDF is overlain by thin, lithogenic gravelly sands interpreted as grain-flow deposits. 
The soft diamictons on the shelf are overlain by thin-bedded, structureless to laminated, lithogenic, gravelly to sandy 
muds (Fig. 2), which were probably deposited in the vicinity of the grounding line during the transition from subglacial 



Hillenbrand et al.: Glacial dynamics of the West Antarctic Ice Sheet in the southern Bellingshausen Sea during the last glacial cycle 

3 

to glaciomarine conditions. Sedimentation during deglaciation is also inferred for the distal turbidites on the slope. Post-
glacial sedimentation in the southern Bellingshausen Sea is dominated by brown, bioturbated, planktonic foraminifera-
bearing muds occurring on the slope and on the outer to middle shelf (Fig. 2). Manganese-coated pebbles representing 
iceberg-rafted debris (IRD) are often scattered on the seabed of the outer shelf and upper slope and point to low 
sedimentation rates (<1 cm/kyr). On the inner shelf post-glacial sediments consist of olive to brown, bioturbated 
diatomaceous muds with low IRD concentrations. Both the foraminifera- and the diatom-bearing sediments document 
plankton production in a seasonally open-marine setting. Contents of lithogenic sand and (calcareous) foraminifera tests 
in the surface sediments and their AMS 14C ages increase from the inner shelf to the upper slope. This pattern probably 
results from current-induced winnowing of the fine-grained particles. At present, an oceanographic front, the southern 
boundary of the Antarctic Circumpolar Current, runs along the shelf break of the southern Bellingshausen Sea (Orsi et 
al., 1995). We assume that this front repeatedly swept across the upper slope and outer shelf during the past, thereby 
winnowing the seabed sediments. In contrast to the outer shelf, the sedimentation rates on the inner shelf are relatively 
high, which is indicated by the low concentration of IRD and the lack of manganese coating of pebbles. 

 
Figure 2. Lithology, physical properties (magnetic susceptibility, water content, shear strength, WBD =wet bulk 

density, measured with the MSCL =multi-sensor core logger), grain-size distribution and clay mineral composition of 
core GC374 (see Fig. 1 for site location). 

Clay minerals as indicators of glacial and glaciomarine transport processes and pathways 
The clay mineral assemblages in the deformation tills, the sub-ice shelf and iceberg-rafted diamictons, the GDFs and 

the laminated sequence at site GC380 are remarkably homogenous with contents of smectite, illite, chlorite and 
kaolinite exhibiting hardly any variations at a particular core site (Fig. 2). As in the transitional and the post-glacial 
sediments, illite and smectite form the dominant clay mineralogical components in all cores. The clay mineral 
assemblages in the GDFs and turbidites from the Belgica TMF are relatively uniform with the smectite contents slightly 
increasing from east to west. However, the clay mineral contents in the sub-glacial sediments on the shelf vary 
significantly between core sites with no clear spatial pattern recognizable. This finding is surprising because the clay 
mineral distribution in the lithogenic fraction of the surface sediments shows a clear relation to both source rocks in the 
continental hinterland and modern transport pathways of the detritus (Hillenbrand et al., 2005). The modern supply of 
lithogenic material from the coast to the shelf and slope is assumed to be mainly controlled by wind and tidal driven 
currents and iceberg drift. The geographical heterogeneity of the clay mineral composition may indicate that the 
subglacial diamictons on the shelf have different ages. If during past glacial periods the ice stream flowing through 
Belgica Trough did not always drain the same source area in the West Antarctic hinterland, the clay mineral 
composition of the corresponding subglacial deposits should reflect this variability. The main catchment area of the ice 
stream may have changed geographically either within a single (i.e. the last) glacial period or from one glacial period to 
another. Evidence for different ages of the subglacial diamictons recovered at sites PS2533, GC374 and GC372 comes 
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from multibeam data and a seismic line across the western flank of outer Belgica Trough (Fig. 1). These data reveal a 
smaller, second-order trough incised into the main trough where dipping, near-seabed reflectors, which correspond to 
the cored deformation tills, are erosionally truncated. However, we do not exclude the possibility that during the LGM 
the ice stream remobilised and reworked older sediments on its way across the shelf. Subglacial mixing of this old 
detritus with basal debris eroded from the West Antarctic hinterland within the deforming bed of the ice stream may 
explain the variability of the clay mineral assemblages in the subglacial sediments at the other core sites. Because most 
old shelf sediments are probably tills, this scenario would also imply that ice streams advancing across the shelf of the 
southern Bellingshausen Sea during past glacial periods did not always drain the same catchment area. 

The clay mineral composition of the structureless to laminated sandy muds deposited subsequently to grounded ice 
retreat from the shelf changes from an assemblage similar to that in the subglacial sediments to an assemblage 
resembling that in the sediments deposited under seasonally open-water conditions (Fig. 2). When the grounding line 
was located proximal to a core site, the lithogenic detritus deposited at the site had the same clay mineralogical 
fingerprint as the subglacial debris. When the grounding line retreated further away from the core site, additional 
lithogenic detritus from a wider source area was supplied to the site by ocean currents. On the western Belgica TMF the 
sandy mud unit marking the transition from GDF deposition to open-marine sedimentation exhibits an initial increase in 
smectite contents followed by a decrease to concentrations more typical for the post-glacial sediments. On the shelf, 
similarly high smectite concentrations were only observed in the subglacial diamicton recovered at site GC372, which is 
located in the second-order trough. Therefore, we suggest that at the end of the last glacial period, when the grounding 
line had already retreated from the shelf break, primarily sediment eroded from the second-order trough was delivered 
to the western Belgica TMF, possibly by meltwater outbursts carving the second-order trough into the outer shelf. 

Timing of ice retreat from the shelf 
We obtained AMS 14C ages on the AIO of six cores from the shelf (GC374, GC371, GC372, GC368, GC357, 

GC359, and GC366). We dated the subglacial diamicton, the basal and the top section of the sandy mud unit, and the 
surface sediment. At all core sites except GC371 the 14C ages increase with core depth. Down-core ages at a particular 
site were corrected by subtracting the AIO age of the core top. We consider the 14C age obtained from the upper section 
of the sandy mud unit, which marks the phase of ice retreat from a core site, to be the most reliable age for deglaciation 
because these sediments contain a clay mineral assemblage corresponding to that of the post-glacial sediments. In 
contrast, the basal section from the sandy mud unit contains a clay mineralogical fingerprint corresponding to that of the 
subglacial diamictons. Therefore, significant contamination of the lower section of the sandy mud unit with reworked 
fossil carbon is very likely. The assumption of contamination of AMS 14C ages obtained from the lower section of the 
sandy mud is confirmed by the similarity of these ages with those of the underlying subglacial diamictons. The 
corrected AMS 14C ages of the upper section of the sandy mud unit indicate the following deglaciation ages for the 
southern Bellingshausen Sea: outer shelf (GC374, GC371) ca. 26 ka, middle part of the shelf (GC368, GC357) ca. 19 
ka, Eltanin Bay (GC366) ca. 12 ka, and Ronne Entrance (GC359) ca. 7 ka B.P. 

Summary 
Glacial and glaciomarine sediments recovered from the shelf and slope in the southern Bellingshausen Sea reveal 

that a grounded ice stream advanced through Belgica Trough to the shelf break during the last glacial period. The ice 
stream drained different source areas in the West Antarctic hinterland, eroded and reworked old shelf sediments, and 
deposited subglacial debris as deformation till at its base. Some of this subglacial debris was transported across the shelf 
edge and re-deposited down-slope onto the Belgica TMF by debris flows and turbidites. The timing of post-LGM 
deglaciation of the shelf suggests an early onset of WAIS retreat in the southern Bellingshausen Sea, with progressive 
deglaciation possibly continuing to the present day. 
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